Naysmith Optics of the Solar-C Telescope

Institute for Astronomy

Presented By: Dylan Ichikawa

Research Supervisor: J.D. Armstrong

Research Advisor: Jeff Kuhn
Introduction

• Solar-C Telescope
• Naysmith Optics
• Simulation Tools
• Final Design
Solar-C Telescope

0.50 m Primary Mirror
Objective

• Design the Naysmith Optics for the Solar-C Telescope

 – Geometric Ray Tracing
 • Optical Light Path in Solar-C
 • Relative Positioning of the Imaging and Optics

 – Zemax
 • Optical Design Simulator
 • Simulates Response of Lenses
 • Graphs and Diagrams for Aberration Correction
Solar-C Naysmith Optics

- Secondary Mirror
- Gregorian Focus
- Final Image Plane
- Image Plane
- Lens 1
- Naysmith Lens 2
- Optical Axis
- Fold Mirror
- Primary Mirror Image
- Primary Mirror
Solar-C Naysmith Optics

- Two Lens and Mirror Combination to Extract Image
 - First lens – Collimate the Light
 - Mirror – 45° Tilt
 - Second lens – Focus the Light
- Magnification
 - Second Lens Focal Length : First Lens Focal Length
- Length of Collimated Light
 - Optical Invariant and Footprint of Light on First Lens

![Diagram of Solar-C Naysmith Optics]

Diagram Notes:
- Focal Plane
- Footprint
- Mirror
- Optical Axis
- Length of Collimated Light
- Lens 1
- Lens 2
Zemax Simulations

• Analyzing Design
 – Geometric Ray Tracing
 – Calculates Aberrations
 • Ray Fan Diagrams
 • Spot Diagrams
 • Encircled Energy Diagrams
Aberrations

• Something that Blurs Out an Image
• Types of Aberrations
 – Spherical, Focal, and Chromatic

-focused Image of Sun\hspace{1cm}\text{Out of Focused Image of the Sun}\

• Minimize the Aberrations
Ray Fan Diagrams

- Transverse Error Diagram
 - Lens
 - Ray Location at Lens
 - Transverse Error
 - Optical Axis
 - Ideal Ray Location at Focus

- Ideal Lens

- Singlet Lens

- Doublet Lens
Spot Diagrams

Ideal Lens

Singlet Lens

Doublet Lens
Encircled Energy Diagrams

Encircled Energy Radius Diagram

- <2 * Encircled Energy Radius
 - Indistinguishable

- 2 * Encircled Energy Radius
 - Distinguishable

Singlet Lens

Doublet Lens

Ideal Lens
Naysmith Optics Zemax Simulations

• Lenses and Mirror Combinations
 – Diffraction Limited Spot Sizes, Minimal Aberrations, Small Radius of Encircled Energy
 – Bandwidth of a System
 – Optics Selection

Zemax Simulations for the Solar-C Telescope with Naysmith Optics

Center Frequency of 1000 nm
Final Design
Acknowledgements

• The Institute for Astronomy
 – J.D. Armstrong
 – Jeff Kuhn

• Center for Adaptive Optics
 – Malika Bell
 – Lisa Hunter
 – Hilary O’ Bryan

• Maui Economic Development Board
 – Isla Yap

• Maui Community College
 – Mark Hoffman

• Funding provided through the Center for Adaptive Optics, a National Science Foundation Science and Technology Center (STC), AST-987683

• Mom and Dad
Questions

Sunrise on top Haleakala